Главная ->  Логарифмическое определение устойчивости 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 [ 178 ] 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

В системах с переменной структурой следует стремиться реализовать скользящий режим. Для этого переключения в системе должны производиться в таких местах, где фазовые траектории направлены навстречу друг другу. Покажем это па примере.

Пусть в той же системе (рис. 17.22) звено также устроено по принципу рис. 16.27, а, по

xi=--y - cx, где у.

(П.127)

Тогда прежнее выражение для W:

при при

XiX>0,

xix<:o,

получает другой смысл. Возьмем при этом

а = ki, Р = - к.

Получим два уравнения системы:

-\-kikx=0 при XiX>0,

dt dx

- kikx - О при XiX < 0.

(17.128) (17.129)

Линиями раздела между областями их действия будут

X = О и Xl == у - СХ = О,

т. е. ось ординат и наклонная прямая на фазовой плоскости (рис. 17.24). При этом уравнение (17.128) будет действовать в первом и третьем секторах фазовой плоскости. Поэтому там фазовыми траекториями будут служить согласно рис. 16.8 концентрические эллипсы. Уравнение же (17.129) будет действовать во втором и четвертом секторах фазовой плоскости (рис. 17.24), где фазовые траектории изобразятся в соответствии с рис. 16.3.

Обе эти линейные структуры (17.128) и (17.129) по отдельности не обладают устойчивостью. Благодаря же переключениям система в целом становится устойчивой.

В отличие от предыдущей системы, здесь, как видно из рис. 17.24, нет колебательного процесса. При любых начальных условиях фазовая траектория прихо-паклонную прямую х- = О, где она встречается с фазовой траек-с противоположным ей направлением движения. Поэтому пере-


Рис. 17.24.

дит па торией

ход изображающей точки через прямую Xi = О невозможен. В результате изображающая точка вынуждена двигаться вдоль прямой = О в сторону начала координат, что и представляет собой скользящий режим переходного процесса в данной системе.



§ 17.51 ИССЛЕДОВАНИЕ СИСТЕМ С ПЕРЕМЕННОЙ СТРУКТУРО]2 539

Практически скользящее движение будет сопровождаться вибрациями вследствие быстрых переключений то в одну, то в другую сторону, как и показано на рис. 17.24. Ввиду неидеальпости системы (дополнительной инерционности или запаздывания) эти вибрации будут иметь конечные амплитуду и частоту. При идеальном же рассмотрении, проведенном выше, амплитуда их равна пулю, а частота - бесконечности.

Рассмотрение реального переходного процесса скользящего типа с конечными вибрациями за счет дополнительной инерционности, повышающей порядок уравнения, возможно с помощью приближенного метода гармонической линеаризации. Это можно сделать аналогично рассмотрению медленно меняющихся сигналов в автоколебательных системах (§ 19.2), если за медленно меняющийся сигнал принять основное апериодическое движение в скользящем процессе, а наложенные па него вибрации рассчитать, как автоколебательную составляющую процесса (см. [101]).



ГЛАВА 18 .

ПРИБЛИЖЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ УСТОЙЧИВОСТИ И АВТОКОЛЕБАНИЙ

§ 18.1 Гармоническая линеаризация нелинейностей

В этой главе будет изложен метод гармонической линеаризации для приближенного определения периодических решений (автоколебаний) и устойчивости нелинейных систем любого порядка, который по идее близок к методу эквивалентной линеаризации или методу гармонического баланса Н. М. Крылова и Н. Н. Боголюбова, а по результатам - также и к методу малого параметра Б. В. Булгакова.

Рассматриваемый приближенный метод является мощным средством исследования нелинейных автоматических систем в смысле простоты и довольно большой универсальности его аппарата в применении к самым разнообразным нелинейностям. Однако надо иметь в виду, что он решает задачу приближенно. Имеются определенные ограничения его применимости, о которых будет сказано ниже. Эти ограничения обычно хорошо соблюдаются в задачах теории автоматического регулирования. Практические расчеты и эксперимент показывают приемлемость этого метода для многих видов нелинейных систем.

Пусть дано какое-нибудь нелинейное выражение вида

у = F{x, рх) (18.1)

и задано

ж = а sin ф, ф = tui!. (18.2)

Тогда

рх = ati) cos ф. (18.3)

Разложив функцию в правой части выражения (18.1) в ряд Фурье, получим

У = -

j F (а sin ф, ati) cos ф) йф --

-f jF(asinф, a(вcosф)sinфdф sinф--

F(asinф, сив cos ф) cos ф <ф cosвысшие гармоники. (18.4)

Положим

j F (а sin ф, ati) cos ф) йф = О, (18.5)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 [ 178 ] 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254